

Summary

<u>Hall A – GEM</u>

Mary Ann Antonioli, Peter Bonneau, Brian Eng, George Jacobs, Mindy Leffel, Tyler Lemon, Marc McMullen

- Tested successfully BigBite gas distribution system
 - ★ Standard flow channels were at ~350 sccm for about an hour
 - ★ High flow channels were at ~560 to 580 sccm for about an hour
- Developed, in AutoCAD, setup for exhaust flow transducer testing

Schematic for exhaust flow transducer test setup

- Populated an I²C multiplexer board; three of six complete
- Cut, fabricated, and tested 38 of 272 I²C communication cables

<u>Hall A – HCal</u>

<u>Mindy Leffel</u>

• Cut and stripped ten of 60 cables to fabricate LEMO-to-LEMO cables

<u>Hall A – SoLID</u>

Mary Ann Antonioli, Pablo Campero, Mindy Leffel, Marc McMullen

- Simulated the circuit of the Constant Current Source board
 - * Observed output current is 97.9 μA
 - * Changed input voltage for board; current output remained at ~100 μ A as expected
 - * Simulated results match the measured voltage and current of the fabricated board
- Modified Cryo Control Reservoir Expert HMI screen
 - * Added temperature sensors for current leads
 - * Changed colors for valves shown on screen
- Populated 8th, and final, constant current source board

<u>Hall B – RICH-II</u>

Mary Ann Antonioli, Peter Bonneau, Tyler Lemon

• Reviewed requirements for mirror reflectivity automation stages to ensure stages suggested by Zaber are able to support probe and any other equipment

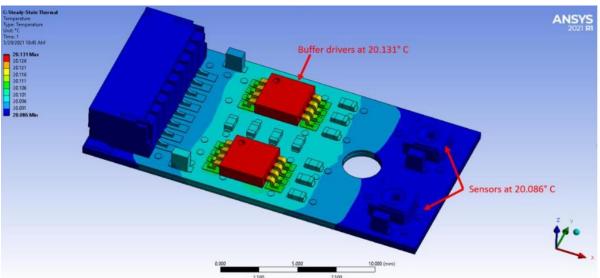
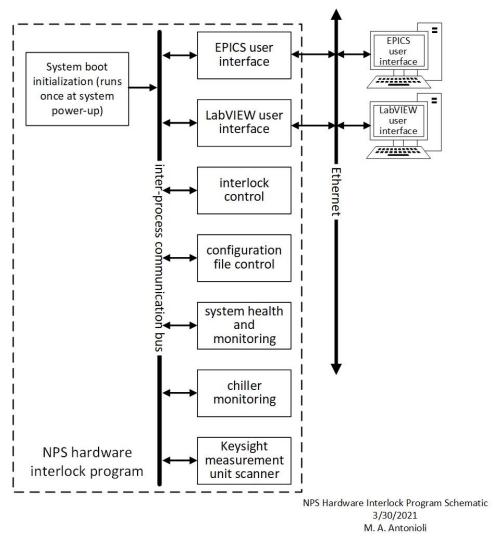

ltem	Model #	Specification	Units	Value
X stage	LC40	travel	mm	800
		capacity	kg	50
		stage weight	kg	3.114
		estimated weight to be carried	kg	16.546
Y stage	LC40	travel	mm	1100
		capacity	kg	50
		stage weight	kg	3.866
		estimated weight to be carried	kg	12.68
Z stage	X-LSQ300A-E01	travel	mm	300
		capacity	kg	50
		stage weight	kg	1.8
		estimated weight to be carried	kg	10.88
theta stage	X-RSW60A-E03	rotation	deg	360
		capacity	kg	20
		stage weight	kg	0.67
		estimated weight to be carried	kg	10.21
phi stage	X-RSW60A-E03	rotation	deg	360
		capacity	kg	20
		stage weight	kg	0.67
		estimated weight to be carried	kg	9.3
Theta-phi mount	AB136	weight	kg	0.24
Probe	RP26	weight	kg	1.6
Probe mount	8028N11	weight	kg	0.7
Extras		weight	kg	2
Safety margin		weight	kg	5

Table of travel, carrying capacity, and weight specifications for proposed Zaber stages.

- Modified SHT35 sensor PCB
 - ★ Replaced thermal vias with direct connections to the plane layers
 - * Relocated decoupling capacitors near the buffer drivers
- Developed, in NX-12, a model of a multilayer SHT35 sensor board to have a more accurate model for ANSYS analysis
 - * PCB was initially represented by a simplified solid block without any layers
 - Manually generating a model with layers allowed ANSYS to assign appropriate materials (copper, FR-4, solder) to items to get a simulation result that more closely matches real world behavior
 - ★ Resulting analysis showed that when PCB reaches a steady state (in terms of heat load), temperature increase is only 0.038 °C from ambient

 Temperature increase is less than the accuracy capability of SHT35 sensor; this means heat generated by buffer drivers should not affect their temperature readings


ANSYS results for multilayer PCB

<u>Hall C – NPS</u>

Mary Ann Antonioli, Peter Bonneau, Aaron Brown, Pablo Campero, George Jacobs, Mindy Leffel, Tyler Lemon

- Development of the LabVIEW subroutine architecture for the Keysight switch/measurement unit
 - Program will initialize the Keysight mainframe using configuration data downloaded from the cRIO controller
 - Configuration data includes the channel measurement type (temperature, voltage, and resistance), measurement options, and scan rate
 - * After initialization the subroutine will scan the enabled channels
 - Channels can be disabled by the user if there is a faulty sensor or if the multiplexer channel is not used for the detector
 - ★ The subroutine will track and report on the number of completed relay cycles for each multiplexer channel as an indicator of relay life usage
- Developed, in Visio, NPS Hardware Interlock System program block diagram
 - Block diagram shows each LabVIEW subroutine and the communication lines between them

Schematic for NPS Hardware Interlock program

• Added jumpers to four HV Supply cables' SAMTEC 3 connectors (between pins 1 and 8) to enable no load cable testing

EIC

<u>Brian Eng</u>

• Scaling ALICE (A Large Ion Collider Experiment) ITS (Inner Tracking System) services to EIC Silicon detector

DSG – Cleanroom EEL 124

<u>Marc McMullen</u>

- Coordinated the effort to reestablish protocols in the large cleanroom
 - * Cleanroom air handler maintenance is scheduled for 03/31/2021
 - ★ Filters will be changed, belts checked, and other general maintenance